Humanity is a circus | How to read chemical structure formula for biotech (part 4)

Let’s continue learning how to read chemical structure formulas—for advancing human immortality biotech, neurotech, and artificial intelligence.

Invest in Robocentric at Robocentric.com/Investors to support advancing AI, robotics, human immortality biotech, and nuclear-fusion outer space tech.

There are a number of different types of structures in structural formulas: bonds, electrons, charges, stereochemistry (skeletal formula), and unspecified stereochemistry.

Bonds are often shown as a line that connects one atom to another. One line indicates a single bond. Two lines indicate a double bond, and three lines indicate a triple bond. In some structures the atoms in between each bond are specified and shown. However, in some structures, the carbon molecules are not written out specifically. Instead, these carbons are indicated by a corner that forms when two lines connect. Additionally, hydrogen atoms are implied and not usually drawn out. These can be inferred based on how many other atoms the carbon is attached to. For example, if Carbon A is attached to one other Carbon B, Carbon A will have three hydrogens in order to fill its octet.

Electrons are usually shown as colored in circles. One circle indicates one electron. Two circles indicate a pair of electrons. Typically, a pair of electrons will also indicate a negative charge. By using the colored circles, the number of electrons in the valence shell of each respective atom is indicated providing further descriptive information regarding the reactive capacity of that atom in the molecule.

Often times, atoms will have a positive or negative charge as their octet may not be complete. If the atom is missing a pair of electrons or has a proton, it will have a positive charge. If the atom has electrons that are not bonded to another atom, there will be a negative charge. In structural formulas, the positive charge is indicated by ⊕, and the negative charge is indicated by ⊖ .

Chirality in skeletal formulas is indicated by the Natta projection method. Stereochemistry is used to show the relative spatial arrangement of atoms in a molecule. Wedges are used to show this, and there are two types: dashed and filled. A filled wedge indicates that the atom is in the front of the molecule; it is pointing above the plane of the paper towards the front. A dashed wedge indicates that the atom is behind the molecule; it is pointing below the plane of the paper. When a straight, un-dashed line is used, the atom is in the plane of the paper. This spatial arrangement provides an idea of the molecule in a 3-dimensional space and there are constraints as to how the spatial arrangements can be arranged.

In chemistry, the Natta projection (named for Italian chemist Giulio Natta) is a way to depict molecules with complete stereochemistry in two dimensions in a skeletal formula. In a hydrocarbon molecule with all carbon atoms making up the backbone in a tetrahedral molecular geometry, the zigzag backbone is in the paper plane (chemical bonds depicted as solid line segments) with the substituents either sticking out of the paper toward the viewer (chemical bonds depicted as solid wedges) or away from the viewer (chemical bonds depicted as dashed wedges). The Natta projection is useful for representing the tacticity of a polymer.

Wavy single bonds represent unknown or unspecified stereochemistry or a mixture of isomers. For example, the above diagram shows the fructose molecule with a wavy bond to the HOCH2- group at the left. In this case the two possible ring structures are in chemical equilibrium with each other and also with the open-chain structure. The ring automatically opens and closes, sometimes closing with one stereochemistry and sometimes with the other.

Skeletal formulas can depict cis and trans isomers of alkenes. Wavy single bonds are the standard way to represent unknown or unspecified stereochemistry or a mixture of isomers (as with tetrahedral stereocenters). A crossed double-bond has been used sometimes, but is no longer considered an acceptable style for general use.

I’ll continue in part 5.

If you haven’t already, visit Robocentric.com/Future, and buy and read my book, titled The Future, to learn how I advance artificial intelligence, robotics, human immortality biotech, and mass-scale outer space humanity expansion tech.

If you would like to support what I do, make donations at Robocentric.com/Donation.

Allen Young

The transhumanistic Asian-American man who publicly promotes and advances AI, robotics, human body biotech, and mass-scale outer space tech.